ELSEVIER

Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier.com/locate/cattod

Low temperature selective catalytic reduction of NO and NO₂ with NH₃ over activated carbon-supported vanadium oxide catalyst

Xiang Gao*, Shaojun Liu, Yang Zhang, Xuesen Du, Zhongyang Luo, Kefa Cen

State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, PR China

ARTICLE INFO

Article history:
Received 13 October 2010
Received in revised form 21 February 2011
Accepted 30 March 2011
Available online 7 May 2011

Keywords: Selective catalytic reduction Ammonia V₂O₅/AC Nitrogen dioxide Ammonium nitrate

ABSTRACT

Selective catalytic reduction (SCR) of NO and NO $_2$ with ammonia was investigated over activated carbon-supported vanadium oxide (V $_2$ O $_5$ /AC) catalyst. The results show that high activity and selectivity could be achieved in wide range of temperatures and space velocities. NO $_x$ conversion to N $_2$ increases with increasing NO $_2$ /NO $_x$ ratio, and the increase vanishes gradually with increasing temperature. An increase of NO $_x$ conversion to N $_2$ from 26% to 94% can be achieved at a temperature as low as 150 °C without the formation of NH $_4$ NO $_3$. The results of temperature programmed desorption (TPD) and infrared (IR) spectrometry experiments show that NH $_4$ NO $_3$ could be deposited on the catalyst at 100 °C and decomposed to NH $_3$, N $_2$ O, and NO around 130 °C. To explain the observed behaviors, AC involved NO $_2$ -SCR process was proposed, in which NH $_4$ NO $_3$ is reduced to N $_2$ by AC instead of NO. This process shows better reactivity at lower temperatures.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Selective catalytic reduction (SCR) with ammonia or urea is an important technology for the elimination of NO_x emitted from stationary power stations and diesel engines. The stoichiometry of the main reaction is known as the "standard SCR":

$$4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$$
 (1)

However, current commercial SCR catalysts such as V_2O_5/TiO_2 and $V_2O_5-WO_3/TiO_2$ have to be operated in the temperature range at $300-400\,^{\circ}$ C, resulting in complicated processes and higher costs. For this reason, a large amount of research has been conducted, and several processes have been proposed [1–5].

One of the most promising solutions is the use of a low temperature SCR catalyst, for which a large number of catalysts have been evaluated [6–10]. In these studies, a V_2O_5/AC catalyst was found to be very promising in much effective NO removal activity around 250 °C [8]. Another solution is the application of the so-called "fast SCR" reaction, which was observed as early as the 1980s [11]. The reaction is considerably faster than the "standard SCR" in the field of low temperatures, with stoichiometry:

$$2NH_3+NO+NO_2 \rightarrow 2N_2+3H_2O$$
 (2)

With the recent development of the non-thermal plasma (NTP) catalytic process and the oxidation catalyst, which can be installed upstream of the SCR catalyst to achieve an effective conversion of

NO to NO $_2$ [12,13], more attention has been paid to the "fast SCR" process. The benefit of the "fast SCR" was reported for SCR catalysts such as V_2O_5 –WO $_3$ –MnO $_2$ /TiO $_2$ and Fe–ZSM5 [14–16]. Several works were focused on elucidating the mechanisms involved [17,18]. More recently, the present authors have investigated the mechanism of the "fast SCR" on V_2O_5 catalyst using quantum chemistry calculations. The results showed that NO $_2$ could readily reoxidize V^{4+} –OH to V^{5+} =O through two reaction routes [19].

However, to the best of our knowledge, NO_x reduction on activated carbon-based catalyst with the coexistence of NO and NO_2 in the feed gas has been scarcely reported. Since NO_2 can be adsorbed on carbon material to form nitrogen complexes [20-22], the SCR of NO and NO_2 on the activated carbon-based catalyst may be different from other catalysts reported for "fast SCR". In the present study, the catalytic property of a V_2O_5/AC catalyst was studied for NO_x reduction with NH_3 in the temperatures between $100\,^{\circ}C$ and $300\,^{\circ}C$. NO_2 temperature programmed desorption (TPD) experiments were performed to evaluate the adsorbed species. The effects of temperature, space velocity, and NO_2/NO_x ratio on NO_x reduction over V_2O_5/AC catalyst were then evaluated. As a product led to low N_2 selectivity of the SCR process, the formation, deposition, and decomposition of NH_4NO_3 were investigated with TPD experiment and infrared (IR) spectroscopy.

2. Experimental

2.1. Catalyst preparation

The activated carbon (AC) used was a commercial product from Tangshan Huaneng Technology Carbon Co., Ltd., China. The

^{*} Corresponding author. Tel.: +86 571 87951335; fax: +86 571 87951616. E-mail address: xgao1@zju.edu.cn (X. Gao).

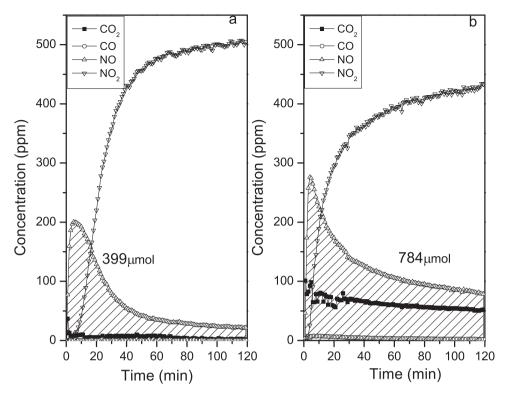


Fig. 1. Outlet concentrations of NO₂, NO, CO and CO₂ during the NO₂ adsorption. Reaction conditions: 500 ppm NO₂, 0% O₂, 0%H₂O, 72,000 L/(kg h) 50 °C for (a) and 150 °C for (b).

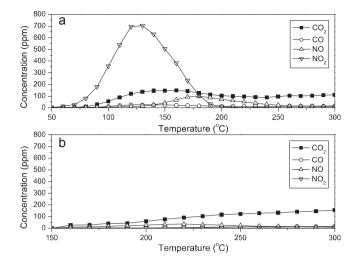
chemical composition and surface area have been described in detail elsewhere [23]. Before being used, the AC was oxidized with concentrated HNO $_3$ (3 mL/g AC) at 60 °C for 1 h, followed by washing with distilled water and drying overnight at 50 °C and then at 120 °C for 5 h. Vanadium oxide was supported on the AC by conventional pore volume impregnation with an aqueous solution of ammonium metavanadate in oxalic acid, followed by dried overnight at 50 °C and then at 120 °C for 5 h. The dried samples were calcinated in Ar for 5 h at 500 °C and then in air at 230 °C for 5 h. The vanadium loading on the catalyst used in this work (3 wt.%) was determined from the ammonium metavanadate concentration used for impregnation (confirmed by ICP analysis). The surface area of the resulting catalyst is 599 m²/g and the average pore diameter is 3.21 nm.

2.2. Characterization of catalyst

Nitrogen adsorption–desorption isotherms were measured at $-196\,^{\circ}\text{C}$ over a range of relative pressures on an Autosorb-1-C system (Quantachrome Instrument). The specific area was computed from isotherms using the Brunauer–Emmett–Teller (BET) method.

Infrared spectra were recorded on a Thermo Nicolet 380 FT-IR in a $400-4000\,\mathrm{cm^{-1}}$ wave number range. The samples were mixed with potassium bromide at a weight ratio of 1:100, ground and palletized, then scanned at a resolution of $4\,\mathrm{cm^{-1}}$.

2.3. NO₂/NH₄NO₃-TPD


 NO_2/NH_4NO_3 -TPD experiments were performed in a 350 mm long quartz flow tube reactor (1 cm i.d.). In a typical experiment, 0.3g (NO_2) or 1g (NH_4NO_3) samples (30–60 mesh) were packed into the reactor within a temperature-controlled furnace. A thermocouple was inserted next to the catalyst to monitor the samples temperature. When treated with NO_2 , the samples were pretreated in an Ar stream at 200 °C for 1 h and then cooled to the starting tem-

perature (50 or $150\,^{\circ}\text{C}$) in the same stream. The gas flow was then switched to the reactive gas mixture containing NO₂ (500 ppm by volume) in Ar. After adsorption for 2 h, the samples were purged successively with Ar for 1 h until the NO and NO₂ concentration in the effluent gas decreased to <15 ppm. A TPD test was run immediately at $10\,^{\circ}\text{C}$ /min to $900\,^{\circ}\text{C}$ to examine the adsorbed species. When treated with NH₄NO₃, the reactive gas mixture contained 450 ppm NO₂, 500 ppm NH₃, 5% O₂ and 3% H₂O. After reaction at $100\,^{\circ}\text{C}$ for 1 h, the samples were purged successively with Ar for 30 min until the outlet concentrations of NH₃ and NO decrease to less than 15 ppm. A TPD test was run immediately at $10\,^{\circ}\text{C}$ /min to $300\,^{\circ}\text{C}$ to examine the adsorbed species.

2.4. Activity and transient response tests

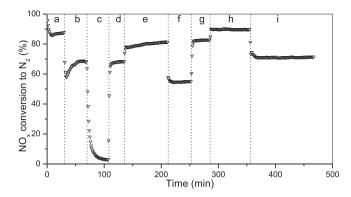
Catalytic activity tests were performed in the same reactor as the above experiment. In order to ensure the complete conversion of NO_x , a typical feeding gas composition was 450 ppm NO_x , 500 ppm NH₃, 5% O₂, and 3% H₂O. Ar was used as the balance gas. Water vapor was introduced by passing Ar through a heated gas-wash bottle containing deionized water. The H₂O content in the feed gas was controlled via the heating temperature. The gas lines were heated up to 100 °C in order to prevent water condensation. To avoid reaction between NO₂ and NH₃ prior to the catalyst bed, NH₃/Ar was fed directly into the reactor, bypassing the mixing chamber. The lines from the exit of the reactor to the gas analyzer were heated up to 180°C in order to prevent the formation and deposition of NH₄NO₃. Different space velocities were obtained by changing the volume of catalyst used. To investigate the role of NO₂ in the SCR reaction on V₂O₅/AC, a transient response experiment was carried out by sequentially switching oxygen or water and changing the NO_2/NO_x ratio.

In both the NO₂/NH₄NO₃-TPD and the activity and transient response tests, a total flow rate of 1.2 L/min was used at 1 atm

Fig. 2. Desorption spectra of the V_2O_5/AC catalyst after NO_2 adsorption for 120 min at (a) $50\,^{\circ}C$ and (b) $150\,^{\circ}C$.

throughout the process. Each feeding gas flow rate was measured and controlled independently by a mass flow controller. Concentrations of NH₃, NO, NO₂, O₂, CO, CO₂, and N₂O were measured simultaneously using an on-line Fourier-transform IR spectrometer (GASMET, DX4000). The NO_{χ} conversion to N₂ was obtained by the following equation:

NO_x conversion to N₂ =
$$\frac{[NO_x]_{inlet} - [NO_x]_{outlet}}{[NO_x]_{inlet}} \times 100\%$$
 (3)


where $[NO_x]_{inlet}$ and $[NO_x]_{outlet}$ denote the total amount of NO_2 , NO and N_2O at the inlet and outlet, respectively.

3. Results and discussion

3.1. NO₂-TPD

The results of the NO₂ adsorption experiment suggest that the adsorption of NO₂ and its reduction to NO occur simultaneously. The outlet NO and NO₂ reach steady state when the adsorption is saturated. The outlet NO_x is then balanced to the inlet NO₂ concentration. The results shown in Fig. 1 are very similar with those reported in [23], suggesting the reactions mainly occur over carbon surface. The steady-state NO and CO₂ concentrations in the NO₂ adsorption step at 150 °C were around 80 ppm and 50 ppm respectively, which are larger than the corresponding values of 50 $^{\circ}$ C. After 2h of NO2 adsorption, about 24% NO2 was reduced by carbon at $150\,^{\circ}\text{C}$, compared to 12% at 50 $^{\circ}\text{C}$. This result reveals that the conversion of NO₂ to NO increases with increasing temperature. It is worth emphasizing that most of NO2 was still in the feed gas at 150 °C. The outlet concentration of CO was <5 ppm. This is consistent with the results of the TPD experiments below, which show that the decomposition of oxygen complexes to CO is not obvious below 300 °C. The N₂O formation was also <5 ppm throughout this step, suggesting that a more severe reduction does not take place. The consumed and emitted oxygen concentrations can be calculated from the NO₂, NO, N₂O, CO₂, and CO concentrations. However, a balance cannot be achieved, confirming the formation of oxygen complexes on the catalyst.

A TPD test was performed after the adsorption and purge at $50\,^{\circ}$ C. The results are presented in Fig. 2a. Since the NO_2 and NO desorption is almost complete, we present the desorption spectra of NO, NO_2 , CO, and CO_2 to $300\,^{\circ}$ C. A sharp desorption of NO_2 with a peak around $130\,^{\circ}$ C could be observed at first. Desorption of NO and CO_2 was then observed, whereas CO was presented only as a

Fig. 3. Transient response results for feeding 3% H_2O (when used), 5% O_2 , 500 ppm NH₃, 450 ppm NO_x, 72,000 L/(kg h), 250 °C: (a) NO = 450 ppm without H₂O; (b) add H₂O; (c) remove O₂; (d) add O₂; (e) NO=NO₂ = 225 ppm; (f) remove O₂; (g) add O₂; (h) NO₂ = 450 ppm; (i) remove O₂.

minor product. The different desorption peaks of NO and NO_2 suggest the variety of the adsorbed nitrogen complexes, which have different chemical natures and thermal stabilities. After the desorption peaks, the emission of NO and NO_2 decreased and almost vanished at $300\,^{\circ}$ C, suggesting that most of the nitrogen containing species created during exposure to NO_2 are no longer stable above this temperature. This is consistent with the previous reports of the NO_2 adsorption on carbon material [20-24]. Fig. 2b shows the results of the TPD experiment after adsorption at $150\,^{\circ}$ C. The emission peaks of NO_2 disappeared, indicating that nitrogen complexes are nearly not retained on the catalyst at this temperature. The emission of CO_2 after $230\,^{\circ}$ C is similar to that in Fig. 1a. This result can be attributed to that the oxygen complexes are still produced by NO_2 reduction at $150\,^{\circ}$ C, and then decomposed to CO_2 with increasing temperature.

Based on our previous research [23], the reactions are shown below:

During the NO₂ adsorption step,

$$NO_2 + -C(*) \rightarrow -C(NO_2) \tag{4}$$

$$-C(NO_2) \rightarrow -C(O) + NO \tag{5}$$

$$-C(O) + NO_2 \rightarrow -C(ONO_2) \tag{6}$$

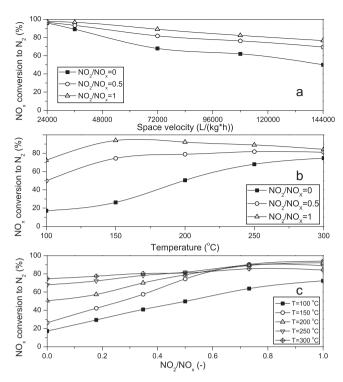
During the TPD step

$$-C(ONO_2) \rightarrow -C(O) + NO_2 \sim 130 \,^{\circ}C \tag{7}$$

$$-C(ONO_2) \rightarrow -C(O_2) + NO > 130 \,^{\circ}C$$
 (8)

The formation of ${\rm CO_2}$ and ${\rm CO}$ is attributed to the following reactions:

$$2C-C(0) \rightarrow C-C(*) + CO_2 + -C(*)$$
 (9)


$$C-C(O) \rightarrow CO + -C(*) \tag{10}$$

$$C-C(O_2) \to CO_2 + -C(*)$$
 (11)

where -C(*) denotes an active site and $-C(O_2)$ represents a surface complex comprising two oxygen atoms.

3.2. Transient response results

The NO_X conversion to N_2 became stable after 10 min as shown in Fig. 3, and the main reaction is the "standard SCR" reaction at this time. On adding 3% H_2O into the feed stream after 30 min, the NO_X conversion to N_2 decreased sharply and reached a steady-state of about 70%. This result is ascribed to H_2O inhibiting the SCR reaction, which is between the NH_3 adsorbed on the Lewis acid sites of the V_2O_5/AC catalyst and NO_X , as reported by Huang et al. [26]. In step (c), O_2 addition to the feed gas was terminated and a drastic

Fig. 4. NO $_x$ conversion to N $_2$ as function of space velocity, temperature and NO $_2$ /NO $_x$ ratio for 450 ppm NO $_x$, 500 ppm NH $_3$, 5% O $_2$, 3% H $_2$ O, 250 °C for (a), 72,000 L/(kg h) for (b and c).

drop in NO_x conversion to N_2 was observed. This is attributed to the need for oxygen in "standard SCR" to reoxidize the reduced catalyst, which is the rate-determining step of the overall reaction according to the mechanism investigated by Lietti and Forzatti [27]. The slow decrease in NO_x conversion to N_2 is due to the ability of the lattice oxygen and surface oxygen functionalities on the catalyst to participate in the reaction between NO and NH_3 in the absence of O_2 [28,29]. The remaining 3% of the NO_x conversion to N_2 is ascribed to the following reaction:

$$4NH_3 + 6NO \rightarrow 5N_2 + 6H_2O$$
 (12)

When O_2 was supplied again at $110 \, \text{min}$, NO_x conversion to N_2 immediately increased and reached the original level. In step (e), NO_x conversion to N_2 increased to 81% when a $0.5 \, \text{NO}_2/\text{NO}_x$ ratio was fed. Oxygen dosing was then stopped again after $210 \, \text{min}$. Unlike step (c), NO_x conversion to N_2 decreased and became stable at 57% rapidly, indicating the effect of NO_2 on the reaction. It was reported that both NO_2 and HNO_3 are able to reoxidize the vanadium catalyst at a much lower temperature than gaseous O_2 [18,19]. The NO_x conversion to N_2 then recovered to the step (e) profile after oxygen was supplied again at $255 \, \text{min}$. In step (h), the NO_2/NO_x ratio was switched to $1 \, \text{and} \, NO_x$ conversion to N_2 increased to 90%. Oxygen dosing was stopped again after $355 \, \text{min}$, and NO_x conversion to N_2 became stable rapidly.

The ratio of consumed NH_3 to NO_x is maintained at nearly 1 throughout the process, indicating that the following reaction does not occur when NO_2 is added into the feed gas.

$$8NH_3 + 6NO_2 \rightarrow 7N_2 + 12H_2O \tag{13}$$

3.3. The SCR activity

Fig. 4a shows the effect of space velocity on NO_x conversion to N_2 with three different NO_2/NO_x ratios at $250\,^{\circ}C$. For a space velocity of $24,000\,L/(kg\,h)$, nearly $100\%\,NO_x$ conversion to N_2 was achieved whether NO_2 existed or not. It then decreased with increasing space

velocity up to $144,000\,L/(kg\,h)$. This decrease slowed with increasing the NO_2/NO_x ratio, confirming the promoting effect of NO_2 . These results demonstrate that the V_2O_5/AC catalyst is highly effective for NO_x conversion to N_2 within a wide range of space velocity, especially when replacing NO with NO_2 . The N_2O formation did not exceed $10\,\mathrm{ppm}$ in any of the experiments, suggesting that an effective selectivity can be achieved.

As illustrated in Fig. 4b, NO_x conversion to N_2 increased at $NO_2/NO_x=0$ when the temperature was increased from 100 to $300\,^{\circ}$ C. This result reveals that the "standard SCR" is enhanced with increasing temperature on the V_2O_5/AC catalyst. However, the NO_2 -SCR was reduced with increasing temperature because of the conversion of NO_2 to NO on the catalyst, as shown in Fig. 1. When NO was replaced with NO_2 , the NO_x conversion to N_2 increased slightly with temperature from 150 to $300\,^{\circ}$ C at $NO_2/NO_x=0.5$. For a ratio of 1, NO_x conversion reached its maximum at $150\,^{\circ}$ C and then gradually decreased. Consequently, the application of NO_2 -SCR on a V_2O_5/AC catalyst must be carried out at low temperatures.

It was reported that the optimum NO₂/NO_x ratio of the SCR reaction is 0.5 for the catalysts such as V_2O_5 –WO₃–MnO₂/TiO₂ and Fe-ZSM5, NO_x conversion to N₂ then decreases with increasing the NO₂/NO_x ratio due to the low reaction rate of the "NO₂ reaction" [14,15]. However, NO_x conversion to N₂ on V₂O₅/AC catalyst increased significantly with increasing the NO₂/NO_x ratio from 0 to 1 at low temperatures as shown in Fig. 4c. An increase of NO_x conversion to N₂ form 26% to 94% was achieved at a temperature as low as 150 °C.

The increase of NO_x conversion to N_2 then vanished gradually as the temperature increased from $150\,^{\circ}$ C to $300\,^{\circ}$ C. A possible explanation for this result can be associated with the conversion of NO_2 to NO as discussed above, which is enhanced by increasing temperature. The NO_2 -SCR reaction is weakened at high temperatures due to the increase of the NO_2 conversion to NO. It is evidently observed that the concentrations of the effluent CO_2 and CO increased with increasing temperature or the NO_2/NO_x ratio in the experiments, as shown in Fig. 5.

3.4. NH₄NO₃ formation and decomposition

As a critical issue for the application of a catalyst in NO_2 -SCR system, a series of experiments were carried out to investigate the formation and decomposition of NH_4NO_3 on the catalyst. Fig. 6 shows the results of NH_4NO_3 -TPD. Marked increases in NO and CO_2 concentrations were observed first, indicating the adsorption and conversion of NO_2 to NO. The NH_3 concentration broke through after 6 min, which is attributed to the ability of the catalyst to adsorb NH_3 [30]. The outlet NO then decreased because of the SCR reaction involving NH_3 , NO and NO_2 . The outlet concentrations of NO and NH_3 reached the steady-state simultaneously. The values suggest that the consumption ratio of NO_2 and NH_3 is still close to 1.

A sharp desorption of NH_3 was observed first when a subsequent TPD experiment run at $10\,^{\circ}\text{C/min}$ was performed. The emission of NO, N_2O , CO, and CO_2 became significant with increasing temperature, confirming the deposition of NH_4NO_3 in the NO_2 conversion step. There was no detectable amount of NO_2 observed in the efflux. The desorption peaks corresponding to various gases occurred simultaneously around $130\,^{\circ}\text{C}$, which coincide with the NO_2 desorption peak shown in Fig. 2a. This decomposition temperature is significantly lower than the corresponding temperature of the deposited NH_4NO_3 over other catalysts, which is $170\,^{\circ}\text{C}$ [17,31].

In summary, all of the observed products in the TPD results such as NH_3 , NO, CO_2 , CO, and N_2O can be associated with a series of reactions as follows:

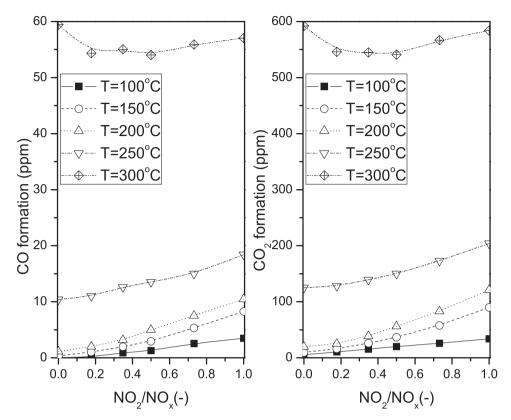


Fig. 5. CO and CO₂ formation during the SCR activity tests.

- (i) Desorption of the adsorbed NH₃.
- (ii) The decomposition of NH₄NO₃ according to the following stoichiometry:

$$NH_4NO_3 \leftrightarrow NH_3 + HNO_3$$
 (14)

(iii) Reaction between AC and HNO₃. It was reported that HNO₃ is a much better oxidizing agent than NO₂, and the reaction between AC and HNO₃ can produce nitrogen and oxygen complexes on the catalyst [25,32].

$$-C(*) + HNO_3 \rightarrow -C(O) + HNO_2 \tag{15}$$

$$-C(O) + HNO_2 \rightarrow -COOH + NO$$
 (16)

$$2-C(*) + 2HNO_2 \rightarrow N2O + H2O + 2-C(O)$$
 (17)

(iv) The decomposition of the oxygen complexes according to reactions (9)–(11).

The reactions (15) and (16) easily occur at very low temperatures, as observed in the treatment of AC using nitric acid [33]. It is why NO desorption peak is around 130 °C. Moreover, the oxidation with HNO3 leads to carbons with a predominant population of surface carboxylic groups (-COOH), which decompose at low temperatures [34,20]. It accounts for a large amount of CO and CO2 appears in the efflux during the TPD step, which is different from that in Fig. 2. The emission of N2O around 130 °C indicates that the decomposition of NH4NO3 yielding N2O and H2O is not reasonable due to the higher temperatures needed. Accordingly,

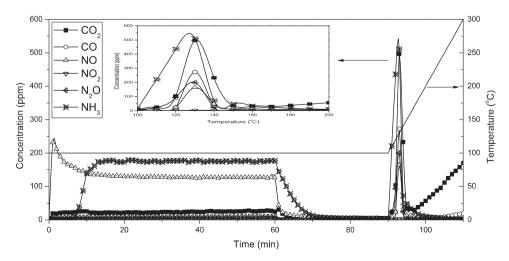


Fig. 6. Outlet concentrations of CO_2 , CO, NO, NO_2 , N_2O , and NH_3 vs. time. Before 60 min: NO_2 conversion step for 450 ppm NO_2 , 500 ppm NH_3 , 5% O_2 , 3% H_2O , 100 °C, 72,000 L/(kg h). After 60 min: purge+TPD step under exposure to Ar.

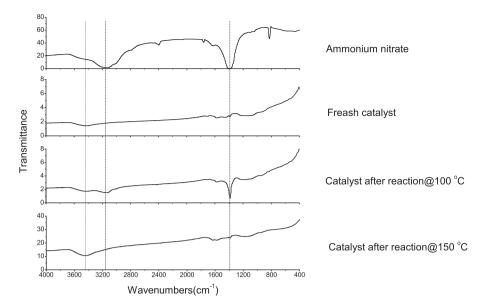


Fig. 7. IR spectra of commercial NH₄NO₃, fresh V_2O_5/AC catalyst and catalyst after reaction at 100 and 150 °C for 5 h using 900 ppm NO₂, 1000 ppm NH₃, 5% O₂, 3% H₂O, 72,000 L/(kg h).

reaction (17) may be a reasonable explanation to the formation of nitrous oxide. Due to the participation of AC, the conversion temperature of NH_4NO_3 is significantly reduced, even below its melting temperature.

A similar experiment, using the same feed mixture and procedure, was performed at $150\,^{\circ}\text{C}$ for comparison. The results show that just a small amount of NH₃ desorbs in the TPD step. This is in agreement with the desorption peaks at $130\,^{\circ}\text{C}$ shown in Fig. 6, demonstrating that NH₄NO₃ is not deposited at $150\,^{\circ}\text{C}$.

IR analyses were carried in order to clarify the deposition of the NH₄NO₃ on the catalyst. As shown in Fig. 7, the catalyst after reaction at 100 °C exhibits the two IR bands characteristic for NH₄NO₃ (1380 and 3150 cm $^{-1}$) [31]. However, the catalyst after reaction at 150 °C exhibits almost no differences from the spectrum for the fresh catalyst, confirming that there is no NH₄NO₃ deposition on the catalyst at this temperature.

3.5. Role of AC support in NH₃-NO/NO₂-SCR

During the SCR activity tests, maximum $deNO_X$ activity, achieved at NO_2/NO_X feed ratio of 1/1 instead of 1/2, was observed. This can be ascribed to the participation of AC support. In the presence of NO_2 , the reaction (18) occurs. However, the ammonium nitrate formed has to be cleared up further [17]. For fast SCR, the conversion of NH_4NO_3 depends on its subsequent reduction by NO based on reaction (19). Accordingly, Nova et al. suggested an alternative sequential scheme, whereby the fast SCR reaction (2) results from the formation of NH_4NO_3 , reaction (18), and its reduction by NO_3 , reaction (19) [35].

$$2NH_3 + 2NO_2 \rightarrow N_2 + NH_4NO_3 + H_2O$$
 (18)

$$NO + NH_4NO_3 \rightarrow N_2 + NO_2 + 2H_2O$$
 (19)

At low temperature the fast SCR is limited by the reaction between NH_4NO_3 and NO. For AC involved NO_2 -SCR, the conversion of NH_4NO_3 depends on reactions (14), (15) and the following reaction (20).

$$NH_4NO_3 \leftrightarrow NH_3+HNO_3$$

$$-C(*) + HNO_3 \rightarrow -C(O) + HNO_2$$

 $HNO_2 + NH_3 \rightarrow [NH_4NO_2] \rightarrow N_2 + 2H_2O$ (20)

$$\overline{NH_4NO_3 + -C(*)} \rightarrow -C(O) + N_2 + 2H_2O$$
 (21)

Considering the consecutive steps, we obtain an overall stoichiometry which roughly reflects the reduction of NH₄NO₃ by AC instead of NO. From the NH₄NO₃-TPD results, it is reasonable to conclude that compared with fast SCR, AC involved NO₂-SCR has better reactivity at lower temperatures. Meanwhile, due to the excess NH₃ in the gas phase and over the catalyst surface, the reactions (16) and (17) are inhibited and reaction (20) is preferred.

Due to the reaction (5) in parallel to SCR reaction (see Fig. 1) and the oxidation of reduced vanadium species by NO_2 to keep the activity (see Fig. 3 step (i)), the introduction of NO into the reacting system is inevitable. The NO removal according to fast SCR needs higher temperatures and rigorous stoichiometry, which are hard to be satisfied. More NO would result in the decrease of NO_X conversion, especially at $150\,^{\circ}$ C.

It is worth emphasizing that the NO_x conversion to N_2 increased from 26% at NO_2/NO_x = 0 to 75% at NO_2/NO_x = 0.5 for the temperature of 150 °C. This increase would be more significant at a lower space velocity. Even if 100% conversion of NO to NO_2 is hard to reach under actual conditions by the NTP catalytic process and the oxidation catalyst [12,13], the largest increase of NO_x conversion to N_2 at 150 °C suggests that the conversion of a fraction of NO to NO_2 is still significant to get high NO_x removal efficiency at low temperatures.

During the AC involved NO₂-SCR process, the active sites of carbon (-C(*)) gradually decrease. The catalyst needs thermal treatment to recover the active sites. Our previous research verified that little change of AC performance was observed with increasing the thermal treatment times [23]. Moreover, we just reported a similar V₂O₅/AC catalyst shows the good performance of SO₂ removal at 150 °C [36]. Combined with the NTP process, the simultaneous removal of SO₂ and NO using the V₂O₅/AC catalyst at low temperature seems an alternative to the current SCR and wet flue gas desulfurization (WFGD) system.

4. Conclusions

The V_2O_5/AC catalyst exhibits high activity and selectivity in the SCR reaction with feed gas containing both NO and NO₂. With the conversion to NO, NO₂ is adsorbed on the catalyst. The NO_x conversion to N₂ increases with increasing NO₂/NO_x ratio at low

temperature, in which the largest increase occurs at $150\,^{\circ}$ C. The increase slows with increasing temperature because of the conversion of NO₂ to NO. NH₄NO₃ tends to be deposited on the catalyst at $100\,^{\circ}$ C and can be decomposed to NH₃, N₂O, and NO around $130\,^{\circ}$ C, confirming that the NO_x removal at $150\,^{\circ}$ C is effective without the formation of NH₄NO₃. AC involved NO₂-SCR process was proposed to explain the observed behaviors. In this process, NH₄NO₃ is reduced to N₂ by AC instead of NO, which has better reactivity at lower temperatures.

Acknowledgements

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 50776079) and Development of China (863 Program) (No. 2007AA061802).

References

- [1] H.E. Curryhyde, H. Musch, A. Baiker, Appl. Catal. B: Environ. 65 (1990) 211–223.
- [2] M. Kang, D.J. Kim, E.D. Park, J.M. Kim, J.E. Yie, S.H. Kim, L. Hope-Weeks, E.A. Eyring, Appl. Catal. B: Environ. 68 (2006) 21–27.
- [3] X. Gao, Y. Jiang, Y. Zhong, Z.Y. Luo, K.F. Cen, J. Hazard. Mater. 174 (2010) 734–739.
- [4] L. Chen, J.H. Li, M.F. Ge, J. Phys. Chem. C 113 (2009) 21177-21184.
- [5] L. Chen, J.H. Li, M.F. Ge, Environ. Sci. Technol. 44 (2010) 9590-9596.
- [6] P.A. Kumar, M.P. Reddy, L.K. Ju, B. Hyun-Sook, H.H. Phil, J. Mol. Catal. A: Chem. 291 (2008) 66–74.
- [7] Z.B. Wu, R.B. Jin, Y. Liu, H.Q. Wang, Catal. Commun. 9 (2008) 2217–2220.
- [8] Z.P. Zhu, Z.Y. Liu, S.J. Liu, H.X. Niu, Appl. Catal. B: Environ. 23 (1999) L229–L233.
- [9] X.L. Tang, J.M. Hao, W.G. Xu, J.H. Li, Catal. Commun. 8 (2007) 329–334.
- [10] J.H. Li, J.J. Chen, R. Ke, C.K. Luo, J.M. Hao, Catal. Commun. 8 (2007) 1896-1900.
- [11] A. Kato, S. Matsuda, F. Nakajima, M. Imanari, Y. Watanabe, J. Phys. Chem. 85 (1981) 1710–1713.
- [12] M.F. Irfan, J.H. Goo, S.D. Kim, Appl. Catal. B: Environ. 78 (2008) 267-274.

- [13] Z.L. Wu, X. Gao, Z.Y. Luo, E.Z. Wei, Y.S. Zhang, J.Z. Zhang, M.J. Ni, K.F. Cen, Energy Fuels 19 (2005) 2279–2286.
- [14] J.H. Goo, M.F. Irfan, S.D. Kim, S.C. Hong, Chemosphere 67 (2007) 718–723.
- [15] M. Devadas, O. Krocher, M. Elsener, A. Wokaun, N. Soger, M. Pfeifer, Y. Demel, L. Mussmann, Appl. Catal. B: Environ. 67 (2006) 187–196.
- [16] J. Blanco, P. Avila, S. Suarez, J.A. Martin, C. Knapp, Appl. Catal. B: Environ. 28 (2000) 235–244.
- [17] M. Koebel, M. Elsener, G. Madia, Ind. Eng. Chem. Res. 40 (2001) 52-59.
- [18] E. Tronconi, I. Nova, C. Ciardelli, D. Chatterjee, M. Weibel, J. Catal. 245 (2007) 1–10.
- [19] X. Gao, X.S. Du, Y. Jiang, Y. Zhang, Z.Y. Luo, K.F. Cen, J. Mol. Catal. A: Chem. 317 (2010) 46–53.
- [20] K. Kante, E. Deliyanni, T.J. Bandosz, J. Hazard. Mater. 165 (2009) 704–713.
- [21] N. Shirahama, S.H. Moon, K.H. Choi, T. Enjoji, S. Kawano, Y. Korai, M. Tanoura, I. Mochida, Carbon 40 (2002) 2605–2611.
- [22] M. Jeguirim, V. Tschamber, J.F. Brilhac, P. Ehrburger, J. Anal. Appl. Pyrolysis 72 (2004) 171–181.
- [23] X. Gao, S.J. Liu, Y. Zhang, Z.Y. Luo, N.M. Jiang, K.F. Cen, Fuel Process. Technol. 92 (2011) 139–146.
- [24] W.J. Zhang, A. Bagreev, F. Rasouli, Ind. Eng. Chem. Res. 47 (2008) 4358-4362.
- [25] A. Jeguirim, V. Tschamber, J.F. Brilhac, P. Ehrburger, Fuel 84 (2005) 1949–1956.
- [26] Z.G. Huang, Z.Y. Liu, X.L. Zhang, Q.Y. Liu, Appl. Catal. B: Environ. 63 (2006) 260–265.
- [27] L. Lietti, P. Forzatti, J. Catal. 147 (1994) 241-249.
- [28] E. Ito, R.J. Hultermans, P.M. Lugt, M.H.W. Burgers, M.S. Rigutto, H. Vanbekkum, C.M. Vandenbleek, Appl. Catal. B: Environ. 4 (1994) 95–104.
- [29] M.E. Galvez, A. Boyano, M.J. Lazaro, R. Moliner, Chem. Eng. J. 144 (2008) 10-20.
- [30] Z.P. Zhu, Z.Y. Liu, H.X. Niu, S.J. Liu, T.D. Hu, T. Liu, Y.N. Xie, J. Catal. 197 (2001) 6-16.
- [31] C. Ciardelli, I. Nova, E. Tronconi, D. Chatterjee, B. Bandl-Konrad, M. Weibel, B. Krutzsch, Appl. Catal. B: Environ. 70 (2007) 80–90.
- [32] S. Bashkova, T.J. Bandosz, J. Colloid Interface Sci. 333 (2009) 97–103.
- [33] C. Moreno-Castilla, F. Carrasco-Marín, F.J. Maldonado-Hódar, J. Rivera-Utrilla, Carbon 36 (1997) 145–151.
- [34] I. Salame, T.J. Bandosz, J. Colloid Interface Sci. 240 (2001) 252–258.
- [35] I. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee, B. Bandl-Konrad, Catal. Today 114 (2006) 3–12.
- [36] X. Gao, S.J. Liu, Y. Zhang, Z.Y. Luo, K.F. Cen, J. Hazard. Mater. 188 (2011) 58-66.